用户名: 密码: 验证码:
Synthesis and Characterization of Novel Soybean-Oil-Based Elastomers with Favorable Processability and Tunable Properties
详细信息    查看全文
文摘
A new series of soybean-oil-based elastomers poly(epoxidized soybean oil-co-decamethylene diamine) (PESD) was synthesized by ring-opening polymerization from epoxidized soybean oil (ESO) and decamethylene diamine (DDA) in different molar ratios. The effect of the molar ratio on the structure and properties of PESD was identified by various methods. According to the results of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and thermogravimetry (TGA), the glycerol center of ESO was broken by ammonolysis as expected in the process of polymerization, which resulted in un-cross-linked elastomers with low glass transition temperatures (Tg) ranging from 鈭?0 to 鈭?7 掳C. PESD-3 (molar ratio of DDA to ESO is 2:1) was found to have the highest molecular weight and was most suitable for further processing. Then, PESD-3 was successfully cross-linked through succinic anhydride by a general rubber processing method to obtain a cross-linked bioelastomer. The mechanism of chain growth, ammonolysis of ester group, and cross-linking of PESD-3 was studied. The tensile strength of cross-linked PESD could be flexibly adjusted from 0.8 to 8.5 MPa by using different amounts of succinic anhydride without reinforcing fillers. The final bioelastomer possesses good damping property, low water absorption, and low degradation rate in phosphate buffer solution. These properties indicate potential engineering applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700