用户名: 密码: 验证码:
A Sulfonium Cation Intermediate in the Mechanism of Methionine Sulfoxide Reductase B: A DFT Study
详细信息    查看全文
文摘
The hybrid density functional theory method B3LYP in combination with three systematically larger active site models has been used to investigate the substrate binding and catalytic mechanism by which Neisseria gonorrhoeae methionine sulfoxide reductase B (MsrB) reduces methionine-R-sulfoxide (Met-R-SO) to methionine. The first step in the overall mechanism is nucleophilic attack of an active site thiolate at the sulfur of Met-R-SO to form an enzyme鈥搒ubstrate sulfurane. This occurs with concomitant proton transfer from an active site histidine (His480) residue to the substrates oxygen center. The barrier for this step, calculated using our largest most complete active site model, is 17.2 kJ mol鈥?. A subsequent conformational rearrangement and intramolecular 鈭扥H transfer to form an enzyme-derived sulfenic acid (Cys495S鈥揙H) is not enzymatically feasible. Instead, transfer of a second proton from a second histidyl active site residue (His477) to the sulfurane鈥檚 oxygen center to give water and a sulfonium cation intermediate is found to be greatly preferred, occurring with a quite low barrier of just 1.2 kJ mol鈥?. Formation of the final product complex in which an intraprotein disulfide bond is formed with generation of methionine preferably occurs in one step via nucleophilic attack of the sulfur of a second enzyme thiolate (Cys440S鈥?/sup>) at the SCys495 center of the sulfonium intermediate with a barrier of 23.8 kJ mol鈥?. An alternate pathway for formation of the products via a sulfenic acid intermediate involves enzymatically feasible, but higher energy barriers. The role and impact of hydrogen bonding and active site residues on the properties and stability of substrate and mechanism intermediates and the affects of mutating His477 are also examined and discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700