用户名: 密码: 验证码:
Parametric, Optimization-Based Study on the Feasibility of a Multisegment Antisolvent Crystallizer for in Situ Fines Removal and Matching of Target Size Distribution
详细信息    查看全文
文摘
We have computationally investigated the use of the multisegment, multiaddition, plug-flow crystallizer (MSMA-PFC) for use in producing pharmaceutical crystals. A population balance framework was used to model the crystallization process. The dissolution of crystals can be modeled when solubility is below saturation. The evolved volume fraction distributions were optimized in a least-squares sense by manipulating a vector of decision variables in order to hit a target volume fraction distribution. The genetic algorithm was used for optimization. A reduced orthogonal array experimental design was used to examine the effect of several kinetic parameters and total crystallizer length. The results indicate that the parameters which govern nucleation are the most sensitive, followed by those for growth. Dissolution does not appreciably occur in any of the optimizations. The reason the optimization does not add any pure solvent is likely due to the addition of pure solvent causing a simultaneous decrease in concentration and decrease in residence time, which the optimization judges to be suboptimal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700