用户名: 密码: 验证码:
Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species
详细信息    查看全文
文摘
While it has been recognized for some time that addition of nanoparticlate zerovalent iron (nZVI) to oxygen-containing water results in both corrosion of Fe0 and oxidation of contaminants, there is limited understanding of either the relationship between transformation of nZVI and oxidant formation or the factors controlling the lifetime and extent of oxidant production. Using Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we show that while nZVI particles are transformed to ferrihydrite then lepidocrocite in less than 2 h, oxidant generation continues for up to 10 h. The major products (Fe(II) and H2O2) of the reaction of nZVI with oxygenated water are associated, for the most part, with the surface of particles present with these surface-associated Fenton reagents inducing oxidation of a target compound (in this study, 14C-labeled formate). Effective oxidation of formate only occurred after formation of iron oxides on the nZVI surface with the initial formation of high surface area ferrihydrite facilitating rapid and extensive adsorption of formate with colocation of this target compound and surface-associated Fe(II) and H2O2 apparently critical to formate oxidation. Ongoing formate oxidation long after nZVI is consumed combined with the relatively slow consumption of Fe(II) and H2O2 suggest that these reactants are regenerated during the nZVI-initiated heterogeneous Fenton process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700