用户名: 密码: 验证码:
Fabrication of Biodegradable Polymeric Nanofibers with Covalently Attached NO Donors
详细信息    查看全文
文摘
Many common wound healing aids are created from biodegradable polymeric materials. Often, these materials are unable to induce complete healing in wounds because of their failure to prevent infection and promote cell growth. This study reports the development of therapeutic materials aimed at overcoming these limitations through the release of a naturally occurring antimicrobial agent from a porous, polymeric fiber scaffold. The antimicrobial character was achieved through the release of nitric oxide (NO) while the porous structure was fabricated through electrospinning polymers into nanofibers. Three variations of the polymer poly(lactic-co-glycolic-co-hydroxymethyl propionic acid) (PLGH) modified to include thiol and NO groups were investigated. Fibers of the modified polymers exhibited smooth, bead free morphologies with diameters averaging between 200 and 410 nm. These fibers were deposited in a random manner to create a highly porous fibrous scaffold. The fibers were found to release NO under physiological pH and temperature and have the capacity to release 0.026 to 0.280 mmol NO g鈥?. The materials maintained their fibrous morphological structure after this exposure to aqueous conditions. The sustained morphological stability of the fiber structure coupled to their extended NO release gives these materials great potential for use in wound healing materials.

Keywords:

electrospinning; nanofiber; biodegradable; nitric oxide; therapeutic release; antibacterial; wound healing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700