用户名: 密码: 验证码:
Development of Sol鈥揋el Icephobic Coatings: Effect of Surface Roughness and Surface Energy
详细信息    查看全文
文摘
Sol鈥揼el coatings with different roughness and surface energy were prepared on glass substrates. Methyl triethoxysilane (MTEOS), 3-Glycidyloxypropyl trimethoxysilane (GLYMO) and fluoroalkylsilane (FAS) were used to obtain a mechanically robust icephobic coating. Different amount of hydrophobic silica nano particles was added as fillers to introduce different roughness and surface energy to the coatings. The microstructure, roughness, and surface energy, together with elemental information and surface chemical state, were investigated at room temperature. The contact angle and sliding angle were measured at different temperatures to correlate the wetting behavior at low temperature with the anti-icing performance. The ice adhesion shear strength was measured inside an ice chamber using a self-designed tester. The factors influencing the ice adhesion were discussed, and the optimum anti-icing performance found in the series of coatings. It was found that lower surface energy leads to lower ice adhesion regardless of the roughness, while the roughness plays a more complicated role. The wetting behavior of the droplet on surface changes as temperature decreases. The anti-icing performance is closely related to the antiwetting property of the surfaces at subzero temperatures.

Keywords:

sol鈭抔el coating; icephobicity; ice adhesion; surface roughness; surface energy; mechanical durability

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700