用户名: 密码: 验证码:
Symmetry-Directed Self-Organization in Peptide Nanoassemblies through Aromatic π–π Interactions
详细信息    查看全文
文摘
Almost all biological systems are assemblies of one or more biomolecules from nano- to macrodimensions. Unlike inorganic molecules, peptide systems attune with the conceptual framework of aggregation models when forming nanoassemblies. Three significant recent theoretical models have indicated that nucleation, end-to-end association, and geometry of growth are determined primarily by the size and electrostatics of the individual basic building blocks. In this study, we tested six model systems, differentially modulating the prominence of three design variables, namely, aromatic π–π interactions, local electrostatics, and overall symmetry of the basic building unit. Our results indicate that the crucial design elements in a peptide-based nanoassembly are (a) a stable extended π–π interaction network, (b) size, and (c) overall symmetry of the basic building blocks. The six model systems represent all of the design variables in the best manner possible, considering the complexity of a biomolecule. The results provide important directives in deciding the morphology and crystallinity of peptide nanoassemblies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700