用户名: 密码: 验证码:
Classical and Quantum Modeling of Li and Na Diffusion in FePO4
详细信息    查看全文
文摘
Lithium diffusion in olivine phosphates has been widely studied both experimentally and theoretically. However, nuclear quantum effects (NQEs) of the Li ions have not been accounted for in theoretical studies thus far. In the current work, we compared Li and Na diffusion in Li0.25FePO4 and Na0.25FePO4 by computing density functional theory based classical diffusion barriers in conjunction with NQEs for the Li and Na ions. The NQEs are computed using a novel three-dimensional wave function method based on a path integral formulation. The calculations of both the potential and free energy diffusion barriers suggest that Li diffusion is faster than Na diffusion, in agreement with recent experiments. The NQEs for lithium ions in Li0.25FePO4 are higher than those for sodium ions in Na0.25FePO4. Although the contribution of NQEs to the computed Li and Na ion diffusion rates is rather small, the quantum behavior of the Li ions is unusual. Indeed, we observe a reduction in the computed diffusion rate for Li ions due to quantization. We ascribe this effect to the ability of FePO4 to tightly bind the Li ions in the transient tetrahedral transition state, which reduces the classical diffusion barrier but also enhances quantum confinement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700