用户名: 密码: 验证码:
Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation
详细信息    查看全文
文摘
To produce biocompatible, mechanically robust, and conductive materials for bone tissue engineering, chemical oxidation using sodium hyprochlorite (NaClO) was utilized to introduce carboxyl groups onto silk fibroin (SF). A final carboxyl content of 1.09 mM/g SF was obtained, corresponding to ∼47% of the primary hydroxymethyl groups on the silk. Interestingly, both infrared (IR) spectroscopy and circular dichroism (CD) spectra demonstrated that the resulting oxidized silk (OxSF) self-assembled into β-sheet structures under aqueous conditions and this contributed to the mechanical properties of the as-prepared silk-based scaffolds and the mineralized OxSF scaffolds (M-OxSF). The OxSF scaffolds had a compressive modulus of 211 ± 75 KPa in the hydrated state, 10 times higher than that of the SF scaffolds, and the modulus of the M-OxSF scaffolds was increased to 758 ± 189 KPa. Human bone marrow-derived mesenchymal stem cells (hMSCs) grown on the scaffolds during osteogenesis showed that the OxSF scaffolds supported the proliferation and differentiation of hMSCs in vitro.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700