用户名: 密码: 验证码:
Solvation and Hydration of the Ceramide Headgroup in a Non-Polar Solution
详细信息    查看全文
文摘
The microscopic hydration of the ceramide headgroup has been determined using a combination of experimental鈥攂oth NMR and neutron diffraction techniques and computational techniques鈥攅mpirical potential structure refinement (EPSR) and molecular dynamics (MD). The addition of water to ceramide in chloroform solutions disrupts the chloroform solvation of the ceramide headgroup, and the water forms distinct pockets of density. Specifically, water is observed to preferentially hydrate the two hydroxyl groups and the carbonyl oxygen over the amide NH motif. Further assessment of the location and orientation of the water molecules bound to the ceramide headgroup makes it clear that the strongly solvated carbonyl moiety of the amide bond creates an anchor from which water molecules can bridge via hydrogen bonding interactions to the hydroxyl groups. Moreover, a significant difference in the hydration of the two hydroxyl groups indicates that water molecules are associated with the headgroup in such a way that they bridge between the carbonyl motif and the nearest neighbor hydroxyl group.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700