用户名: 密码: 验证码:
First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers
详细信息    查看全文
文摘
Hysteresis in current鈥搗oltage curves has been an important issue for conversion efficiency evaluation and development of perovskite solar cells (PSCs). In this study, we explored the ion diffusion effects in tetragonal CH3NH3PbI3 (MAPbI3) and trigonal (NH2)2CHPbI3 (FAPbI3) by first-principles calculations. The calculated activation energies of the anionic and cationic vacancy migrations clearly show that I鈥?/sup> anions in both MAPbI3 and FAPbI3 can easily diffuse with low barriers of ca. 0.45 eV, comparable to that observed in ion-conducting materials. More interestingly, typical MA+ cations and larger FA+ cations both have rather low barriers as well, indicating that the cation molecules can migrate in the perovskite sensitizers when a bias voltage is applied. These results can explain the ion displacement scenario recently proposed by experiments. With the dilute diffusion theory, we discuss that smaller vacancy concentrations (higher crystallinity) and replacement of MA+ with larger cation molecules will be essential for suppressing hysteresis as well as preventing aging behavior of PSC photosensitizers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700