用户名: 密码: 验证码:
Combined Chemical Groups and Topographical Nanopattern on the Poly(ε-Caprolactone) Surface for Regulating Human Foreskin Fibroblasts Behavior
详细信息    查看全文
文摘
Surface chemistry and substrate topography could contribute significantly to providing a biochemical and topographical cues for governing the fate of cells on the cell–material interface. However, the synergies between these two properties have not been exploited extensively for biomaterial design. Herein, we achieved spatial-controlled patterning of chemical groups on the poly(ε-caprolactone) (PCL) surface by elegant UV-nanoimprint lithography (UN-NIL). The introduction of chemical groups on the PCL surface was developed by our newly 6-benzyloxycarbonylmethyl-ε-caprolactone (BCL) monomer, which not only solved the lack of functional groups along the PCL chain but also retained the original favorable properties of PCL materials. The synergetic effect of the chemical groups and nanopatterns on the human foreskin fibroblasts (HFFs) behaviors was evaluated in detail. The results revealed that the patterned functional PCL surfaces could induce enhanced cell adhesion and proliferation, further trigger changes in HFFs morphology, orientation and collagen secretion. Taken together, this study provided a method for straightforward fabrication of reactive PCL surfaces with topographic patterns by one-step process, and they would facilitate PCL as potential candidate for cell cultivation and tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700