用户名: 密码: 验证码:
In vitro Immunogenicity of Silicon-Based Micro- and Nanostructured Surfaces
详细信息    查看全文
文摘
The increasing use of micro- and nanostructured silicon-based devices for in vivo therapeutic or sensing applications highlights the importance of understanding the immunogenicity of these surfaces. Four silicon surfaces (nanoporous, microstructured, nanochanneled, and flat) were studied for their ability to provoke an immune response in human blood derived monocytes. The monocytes were incubated with the surfaces for 48 h and the immunogenicity was evaluated based on the viability, shape factors, and cytokine expression. Free radical oxygen formation was measured at 18 h to elicit a possible mechanism invoking immunogenicity. Although no cytokines were significantly different comparing the response of monocytes on the tissue culture polystyrene surfaces to those on the micropeaked surfaces, on average all cytokines were elevated on the micropeaked surface. The monocytes on the nanoporous surface also displayed an elevated cytokine response, overall, but not to the degree of those on the micropeaked surface. The nanochanneled surface response was similar to that of flat silicon. Overall, the immunogenicity and biocompatibility of flat, nanochanneled, and nanoporous silicon toward human monocytes are approximately equivalent to tissue culture polystyrene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700