用户名: 密码: 验证码:
Evaluating the GW Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes
详细信息    查看全文
文摘
Charged excitations of the oligoacene family of molecules, relevant for astrophysics and technological applications, are widely studied and therefore provide an excellent system for benchmarking theoretical methods. In this work, we evaluate the performance of many-body perturbation theory within the GW approximation relative to new high-quality CCSD(T) reference data for charged excitations of the acenes. We compare GW calculations with a number of hybrid density functional theory starting points and with eigenvalue self-consistency. Special focus is given to elucidating the trend of GW-predicted excitations with molecule length increasing from benzene to hexacene. We find that GW calculations with starting points based on an optimally tuned range-separated hybrid (OTRSH) density functional and eigenvalue self-consistency can yield quantitative ionization potentials for the acenes. However, for larger acenes, the predicted electron affinities can deviate considerably from reference values. Our work paves the way for predictive and cost-effective GW calculations of charged excitations of molecules and identifies certain limitations of current GW methods used in practice for larger molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700