用户名: 密码: 验证码:
Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces
详细信息    查看全文
文摘
Surface-enhanced Raman spectroscopy (SERS) is a known approach for detecting trace amounts of molecular species. Whereas SERS measurements have focused on enhancing the signal for sensing trace amounts of a chemical moiety, understanding how the substrate alters molecular Raman spectra can enable optical probing of analyte binding chemistry. Here we examine binding of trans-1,2-two(4-pyridyl) ethylene (BPE) to Au surfaces and understand variations in experimental data that arise from differences in how the molecule binds to the substrate. Monitoring differences in the SERS as a function of incubation time, a period of several hours in our case, reveals that the number of BPE molecules that chemically binds with the Au substrate increases with time. In addition, we introduce a direct method of accessing relative chemical enhancement from experiments that is in quantitative agreement with theory. The ability to probe optically specific details of metal/molecule interfaces opens up possibilities for using SERS in chemical analysis.

Keywords:

Raman spectroscopy; SERS; chemical enhancement; density functional theory; metal鈭抩rganic interface

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700