用户名: 密码: 验证码:
Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties
详细信息    查看全文
文摘
SnTe, a lead-free rock-salt analogue of PbTe, having valence band structure similar to PbTe, recently has attracted attention for thermoelectric heat to electricity generation. However, pristine SnTe is a poor thermoelectric material because of very high hole concentration resulting from intrinsic Sn vacancies, which give rise to low Seebeck coefficient and high electrical thermal conductivity. In this report, we show that SnTe can be optimized to be a high performance thermoelectric material for power generation by controlling the hole concentration and significantly improving the Seebeck coefficient. Mg (2鈥?0 mol %) alloying in SnTe modulates its electronic band structure by increasing the band gap of SnTe and results in decrease in the energy separation between its light and heavy hole valence bands. Thus, solid solution alloying with Mg enhances the contribution of the heavy hole valence band, leading to significant improvement in the Seebeck coefficient in Mg alloyed SnTe, which in turn results in remarkable enhancement in power factor. Maximum thermoelectric figure of merit, ZT, of 鈭?.2 is achieved at 860 K in the high quality crystalline ingot of p-type Sn0.94Mg0.09Te.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700