用户名: 密码: 验证码:
Hierarchically MnO2–Nanosheet Covered Submicrometer-FeCo2O4-Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors
详细信息    查看全文
文摘
The current problem of the still relatively low energy densities of supercapacitors can be effectively addressed by designing electrodes hierarchically on micro- and nanoscale. Herein, we report the synthesis of hierarchically porous, nanosheet covered submicrometer tube forests on Ni foam. Chemical deposition and thermal treatment result in homogeneous forests of 750 nm diameter FeCo2O4 tubes, which after hydrothermal reaction in KMnO4 are wrapped in MnO2-nanosheet-built porous covers. The covers’ thickness can be adjusted from 200 to 800 nm by KMnO4 concentration. An optimal thickness (380 nm) with a MnO2 content of 42 wt % doubles the specific capacitance (3.30 F cm–2 at 1.0 mA cm–2) of the bare FeCo2O4-tube forests. A symmetric solid-state supercapacitor made from these binder-free electrodes achieves 2.52 F cm–2 at 2 mA cm–2, much higher than reported for capacitors based on similar core–shell nanowire arrays. The large capacitance and high cell voltage of 1.7 V allow high energy and power densities (93.6 Wh kg–1, 10.1 kW kg–1). The device also exhibits superior rate capability (71% capacitance at 20 mA cm–2) and remarkable cycling stability with 94% capacitance retention being stable after 1500 cycles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700