用户名: 密码: 验证码:
Hybrid Iron Oxide–Graphene Oxide–Polysaccharides Microcapsule: A Micro-Matryoshka for On-Demand Drug Release and Antitumor Therapy In Vivo
详细信息    查看全文
文摘
Premature drug release is a common drawback in stimuli-responsive drug delivery systems (DDS), especially if it depends on internal triggers, which are hard to control, or a single external stimulus, which can only have one function. Thus, many DDS systems have been reported that combined different triggers; however, limited success has been established in fine-tuning the release process, mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (sodium alginate, chitosan, and hyaluronic acid), iron oxide, and graphene oxide (GO). Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure in which to load drugs through pH control. The polysaccharide component ensured high biocompatibility, bioavailability, and tumor cells targeting. The alternative magnetic field and near-infrared laser triggerable Fe3O4@GO component provided for dual high-energy and high-penetration hyperthermia therapy. On-demand drug release from h-MC can be achieved by synchronizing these external triggers, making the release highly controllable. The synergistic effect of hyperthermia and chemotherapy was successfully confirmed in vitro and in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700