用户名: 密码: 验证码:
Association Behavior, Diffusion, and Viscosity of End-Functionalized Supramolecular Poly(ethylene glycol) in the Melt State
详细信息    查看全文
文摘
In this work we present a combined analysis of small-angle neutron scattering, linear rheology and pulsed field gradient nuclear magnetic resonance spectroscopy experiments on the supramolecular association and chain structure of well-defined telechelically modified poly(ethylene glycol) (PEG) in the bulk. Oligomeric PEG was functionalized with directed heterocomplementary hydrogen-bonding end-groups, thymine (Thy) and diaminotriazine (DAT). The polarity of the backbone polymer is comparable to the end groups and avoids clustering of the groups basing on energetic arguments. Their linear association behavior in the ideal melt state was investigated on the microscopic/molecular level as a function of temperature. By means of a selective labeling scheme, which should ideally lead to the formation of alternating hydrogeneous-deuterated building block sequences if the hydrogen bonding reaction is exclusively heterocomplementary, we showed that the Thy鈥揇AT association is dominant and a Thy鈥揟hy homoassociation is approximately three times less probable. Latter nondirected association gives rise to a considerable amount of random-copolymerization without affecting seriously neither the macroscopic melt viscosity nor the diffusivity of the supramolecular associates. From the q-dependence of a multiblock RPA structure factor, the linear association in the melt is confirmed. Furthermore, this diffusion and viscosity study reveals simple Rouse dynamics of supramolecular polymer chains with molecular weight much larger than the entanglement mass Me. The Rouse-like dynamics of long supramolecular chains indicates short lifetime hydrogen bonds of the end groups. Our results are in excellent agreement with the related polycondensation theory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700