用户名: 密码: 验证码:
Hierarchical CuO鈥揟iO2 Hollow Microspheres for Highly Efficient Photodriven Reduction of CO2 to CH4
详细信息    查看全文
文摘
In this study, a scalable one-pot template-free synthesis strategy was employed to fabricate CuO-incorporated TiO2 hollow microspheres in large scale. The as-prepared hollow spherical TiO2 nanoparticles possess unique structural characteristics, namely, large surface area and a hierarchical nanoarchitecture composed of a hollow macroporous core connected with large mesopores in the shell. The large surface area provides a great number of surface active sites for the reactant adsorption and reaction whereas the hierarchical nanoarchitecture enables fast mass transport of reactant and product molecules within the porous framework. In addition, the hollow macroporous core鈥搈esoporous shell nanostructure favors multilight scattering/reflection, resulting in enhanced harvesting of exciting light. Furthermore, the incorporated CuO clusters work efficiently as a cocatalyst to improve the photocatalytic activity. As a result, the CuO-incorporated TiO2 hollow microsphere catalyst demonstrates much higher photocatalytic activity toward photodriven reduction of CO2 with H2O into CH4 compared with the state-of-the-art photocatalyst, commercial Degussa P25 TiO2. Also, the simple synthesis strategy would enable large-scale industrial production of CuO鈥揟iO2 hollow microspheres.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700