用户名: 密码: 验证码:
Time-Resolved Spectroscopic Characterization of a Novel Photodecarboxylation Reaction Mediated by Homolysis of a Carbon 伪-Bond in Flurbiprofen
详细信息    查看全文
  • 作者:Tao Su ; Jiani Ma ; Naikei Wong ; David Lee Phillips
  • 刊名:The Journal of Physical Chemistry B
  • 出版年:2013
  • 出版时间:July 18, 2013
  • 年:2013
  • 卷:117
  • 期:28
  • 页码:8347-8359
  • 全文大小:739K
  • 年卷期:v.117,no.28(July 18, 2013)
  • ISSN:1520-5207
文摘
Flurbiprofen (Fp), a nonsteroidal anti-inflammatory drug (NSAID) currently in use for arthritis pain relief and in clinical trials for metastatic prostate cancer, can induce photosensitization and phototoxicity upon exposure to sunlight. The mechanisms responsible for Fp phototoxicity are poorly understood and deserve investigation. In this study, the photodecarboxylation reaction of Fp, which has been assumed to underpin its photoinduced side effects, was explored by femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopic techniques in pure acetonitrile (MeCN) solvent. Density functional theory (DFT) calculations were also performed to facilitate the assignments of transient species. The resonance Raman and DFT calculation results reveal that the neutral form of Fp was the predominant species present in MeCN. Analysis of the ultraviolet/visible absorption spectrum and results from TD-DFT calculations indicate that the second excited singlet (S2) can be excited by 266 nm light. Due to its intrinsic instability, S2 rapidly underwent internal conversion (IC) to decay to the lowest lying excited singlet (S1), which was observed in the fs-TA spectra at very early delay times. Intriguingly, three distinct pathways for S1 decay seem to coexist. Specifically, other than fluorescence emission back to the ground state and transformation to the lowest triplet state T1 through intersystem crossing (ISC), the homolysis of the carbon 伪-bond decarboxylation reaction proceeded simultaneously to give rise to two radical species, one being carboxyl and another being the residual, denoted as FpR. The coexistence of the triplet Fp (T1) and FpR species was verified by means of TR3 spectra along with ns-TA spectra. As a consequence of its apparent high reactivity, the FpR intermediate was observed to undergo oxidation under oxygen-saturated conditions to yield another radical species, denoted as FOR, which subsequently underwent intramolecular hydrogen transfer (IHT) and dehydroxylation (DHO) to form a final product, which could react with the carboxyl from the decarboxylation reaction to generate a minor final product. TD-DFT and transient state (TS) calculations for predicting the absorption bands and activation energies of the transient species produced in the photodecarboxylation reaction have provided valuable mechanistic insights for the assignment of the intermediate species observed in the time-resolved spectroscopy experiments reported here. The results of the time-resolved spectroscopy experiments and DFT calculations were used to elucidate the reaction mechanisms and intermediates involved in the photochemistry of Fp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700