用户名: 密码: 验证码:
Computational Exploration of the Binary A1B1 Chemical Space for Thermoelectric Performance
详细信息    查看全文
文摘
In spite of the emergence of chemically complex thermoelectric materials, compounds with simple binary A1B1 chemistry continue to dominate the highest zT thermoelectric materials. To understand the structure鈥損roperty relations that drive this propensity, we employed a descriptor that combines ab initio calculations and modeled electron and phonon transport to offer a reliable assessment of the intrinsic material properties that govern the thermoelectric figure of merit zT. We evaluated the potential for thermoelectric performance of 518 A1B1 chemistries in 1508 different structures and found that good thermoelectric performance of A1B1 compounds originates mainly from low valent ions in combination with cubic and orthorhombic crystal structures, which primarily offer favorable charge carrier transport properties. Additionally, we have identified promising new A1B1 compounds, including their higher-energy polymorphs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700