用户名: 密码: 验证码:
Chemokines in the MPTP model of Parkinson’s disease: Absence of CCL2 and its receptor CCR2 does not protect against striatal neurodegeneration
详细信息    查看全文
文摘
Recent studies have invoked inflammation as a major contributor to the pathogenesis of Parkinson’s disease (PD). We determined the role of members of the chemokine system, key inflammatory mediators, in PD pathogenesis. In the MPTP model of murine PD, several chemokines, including CC chemokine ligand 2 (CCL2, Monocyte Chemoattractant Protein-1) and CCL3 (Macrophage Inflammatory Protein-1α), were upregulated in the striatum and the ventral midbrain. Astrocytes were the predominant source of CCL2 and CCL3 in the striatum and the substantia nigra, and dopaminergic neurons in the substantia nigra constitutively expressed these two chemokines. MPTP treatment resulted in decreased CCL2 expression and increased CCL3 expression in the surviving dopaminergic neurons. Because we found that CCL2 induced production of TNF-α in microglial cells, a cytokine known to play a detrimental role in PD, we anticipated that deletion of the genes encoding CCL2 and CCR2, its major receptor, would confer a protective phenotype. However, MPTP-induced striatal dopamine depletion was comparable in double knockout and wild-type mice. Our results demonstrate that chemokines such as CCL2 are induced following MPTP treatment, but that at least within the context of this PD model, the absence of CCL2 and CCR2 does not protect against striatal dopamine loss.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700