用户名: 密码: 验证码:
Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests
详细信息    查看全文
  • 作者:H. Alkan ; Y. Cinar and G. Pusch
  • 刊名:International Journal of Rock Mechanics and Mining Sciences
  • 出版年:2007
  • 出版时间:January 2007
  • 年:2007
  • 卷:44
  • 期:1
  • 页码:108-119
  • 全文大小:713 K
文摘
This paper presents an experimental investigation of rock salt dilatancy boundary based on combined acoustic emission and triaxial compression tests carried out on the rock salt samples from the Asse Salt Mine, Germany. The experimental results were evaluated to determine the dilatancy boundary under specified stress, stress loading rate and pore pressure. Pore volume changes caused by deviatoric stresses were measured during triaxial compression tests. The dilatancy boundary was then determined from the maximum compression on a stress–strain curve which separates the compression and dilatancy regions. Variations in acoustic emissions that occur during microcrack development under triaxial compression were recorded with ten sensors mounted on the outer surface of the cylindrical samples. A spontaneous increase observed in the cumulative number of acoustic events is consistent with the dilatancy boundary determined from the minimum pore volume. It is confirmed that the dilatancy boundary depends on both stress loading rate and pore pressure. The dilatancy boundary slightly decreases with increasing the loading rate, but increases with increasing the minor normal stress. High pore pressures accelerate the dilatancy. A Biot coefficient of 0.25 for Asse rock salt was determined from the dilatancy boundary. An analysis of two-dimensional (2D) fractal dimensions determined for several samples shows that the samples with smaller dimensions have slightly higher dilatancy boundaries. The dilatancy boundary values of Asse rock salt are lower than those reported for crystalline rocks, although both rock types show similar dilatancy behaviour.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700