用户名: 密码: 验证码:
Efficiency improvement of organic solar cells with imprint of nanostructures by capillary force lithography
详细信息    查看全文
文摘
Organic solar cells imprinted with nanostructures, by the capillary force lithography process using soft molding, on either the active layer or the electron transport layer (ZnO) of an inverted organic solar cell are made. With proper control of the wetness of the ZnO or the active layer, either of them can be readily driven by the capillary force into the cavities formed by the nanostructures on the soft mold during the imprint. The nanostructures demonstrated here can be either regular gratings or arrays of nanorods. Due to light scattering and intrusion of the nanostructures into the active layer, both light absorption and carrier transport can be significantly improved, which can effectively increase both the fill factor and the power conversion efficiency (PCE). For solar cells having nanostructures imprinted on the electron transport layer of ZnO, the PCE can increase from 2.39 to 2.65% for gratings or 3% for arrays of nanorods, respectively, and the fill factor can increase from 0.5 to 0.57 for arrays of nanorods. For solar cells having nanostructures of gratings imprinted on the active layer, the fill factor increases from 0.5 to 0.6, the current density increases from 9.02 mA/cm2 to 9.73 mA/cm2, and the PCE increases from 2.4 to 3.05%. The use of capillary force to imprint nanostructures eliminates the use of costly imprint equipments and possible damage of the active layer by contacting with air.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700