用户名: 密码: 验证码:
Jasonsmithite, a new phosphate mineral with a complex microporous framework, from the Foote mine, North Carolina, U.S.A.
详细信息       来源:American Mineralogist    发布日期:2021年11月1日
121121&rid=533&fid=10000028a" style="height: 220px; width: 150px;perspective-origin: 75px 110px; transform-origin: 75px 110px; font: 12px 微软雅黑; " />

内容简介线

Jasonsmithite (IMA2019-121), Mn 4 2 +ZnAl(PO4)4(OH)(H2O)7·3.5H2O, is a pegmatite-phosphate mineral from the Foote Lithium Company mine, Kings Mountain district, Cleveland County, North Carolina, U.S.A. It is interpreted as having formed by late-stage, low-temperature hydrothermal alteration. Crystals are colorless to light brown, slightly flattened prisms to about 1 mm in length with wedge-shaped terminations. The mineral is transparent with vitreous luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and perfect {001} cleavage. The density is 2.63(2) g/cm3. Jasonsmithite is biaxial (–), with α = 1.561(2), β = 1.580(2), γ = 1.581(2), measured in white light. The 2V is 25(5)° and dispersion is r 4 and ZnO4 tetrahedra, AlO6 and MnO6 octahedra, and OH groups. Electron microprobe analyses gave the empirical formula (Mn3.09Fe0.87)Σ3.96Zn1.05Al0.98(PO4)4(OH)(H2O)7·3.5H2O. The mineral is monoclinic, P21/c, a = 8.5822(3), b = 13.1770(6), c = 20.3040(14) ?, β = 98.485(7)°, V = 2271.0(2) ?3, and Z = 4. The structure (R1 = 0.0443 for 3685 I>2σI reflections) contains zigzag chains of edge-sharing MnO6 octahedra that corner-link to adjacent chains and to PO4 tetrahedra to form sheets, which are decorated by ZnO4 tetrahedra. The sheets are linked to one another via dimers of AlO6 octahedra, forming a framework with large channels containing H2O groups. With H2O groups removed, the framework has a void space of 70.2% per unit cell, and a framework density of 14.5 polyhedral atoms/1000 ?3, which would place jasonsmithite among the most porous minerals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700